Trending

Western Digital AI Data Cycle Framework for AI workloads

Western Digital unveiled a six-stage AI Data Cycle framework that identifies the ideal storage mix for AI workloads at scale, sparking the subsequent wave of AI innovation. Customers may lower the total cost of ownership (TCO) of their AI workflows, increase productivity, and optimize their AI investments by using this framework to design and build sophisticated storage infrastructures.Western Digital PCIe Gen5 SSD to Support AI Training the volt post

AI models process text, photos, music, and video among other data kinds while also creating new, original data, in a continuous cycle of data production and consumption. Data storage systems must manage enormous amounts of data while providing the capacity and performance to support the computational loads and speeds needed for big, complex models as AI technologies evolve.

Western Digital unveiled a new industry-leading, high-performance PCIe® Gen5 SSD to support AI training and inference; a high-capacity 64TB* SSD for quick AI data lakes; and the world’s largest capacity ePMR, UltraSMR 32TB* HDD for economical storage at scale. Western Digital has strategically aligned its Flash and HDD product and technology roadmaps to the storage requirements of each critical stage of the cycle.

“There’s no doubt that Generative AI is the next transformational technology, and storage is a critical enabler. The implications for storage are expected to be significant as the role of storage, and access to data, influences the speed, efficiency and accuracy of AI Models, especially as larger and higher-quality data sets become more prevalent,” said Ed Burns, Research Director at IDC. “As a leader in Flash and HDD, Western Digital has an opportunity to benefit in this growing AI landscape with its strong market position and broad portfolio, which meets a variety of needs within the different AI data cycle stages.”

“Data is the fuel of AI. As AI technologies become embedded across virtually every industry sector, storage has become an increasingly important and dynamic component of the AI technology stack,” said Rob Soderbery, executive vice president and general manager of Western Digital’s Flash Business Unit. “The new AI Data Cycle framework will equip our customers to build a storage infrastructure that impacts the performance, scalability, and the deployment of AI applications, underscoring our commitment to deliver unparalleled value to our customers.”

Growing Suite of Enterprise AI Storage Solutions for Compute- and Storage-Intensive Workloads

Western Digital’s first enterprise-class PCIe Gen 5.0 SSD, the Ultrastar DC SN861 SSD, has industry-leading random read speed and is expected to have the highest power efficiency for AI applications. Its capacities reach up to 16TB, and its ultra-low latency and remarkable responsiveness make it ideal for large language model (LLM) training, inferencing, and the deployment of AI services.

Compared to the previous generation, it offers up to 3x improvements in random read performance. Furthermore, the low power profile lowers total cost of ownership by delivering greater IOPS/Watt. The rising need of the AI market for high-speed accelerated computing coupled with low latency to support AI’s compute-intensive settings is addressed by the improved PCIe Gen5 capacity.

The Ultrastar DC SN861 is designed for mission-critical applications and has a broad feature set that includes 1 and 3 DWPD, support for NVMe® 2.0 and OCP 2.0, and a 5-year limited warranty1. SN861 E1.S, the Ultrastar DC, is now sampling. This month, the U.2 will start sampling, and in CQ3’24, it will start shipping in large quantities. Later this year, further information on the E1.S and E3.S form factors will be released.

The enhanced Ultrastar DC SN655 enterprise-class SSD series, intended for storage-intensive applications, is a perfect match for the Ultrastar DC SN861. With up to 64TB of storage available, the new U.3 SSD solutions will enable quicker, bigger data lakes as well as increased speed and capacity for AI data preparation. The new DC SN655 variations are currently being sampled. When mass sales of the SSDs start later this year, more information about them will be made available. 

The 32TB ePMR enterprise-class HDD with the largest capacity in the market is now being sampled by Western Digital for a limited number of clients. The new Ultrastar DC HC690 high-capacity UltraSMR HDD is specifically designed for big data storage in hyperscale cloud and business data centers. It will be an essential component of AI workflows where low TCO and large-scale data storage are critical. The new 32TB drive maintains exceptional dependability and durability while delivering unmatched capacity with smooth certification and integration for quick deployment. It does this by leveraging tried-and-true architectures from decades of wildly successful products. Later this summer, more information on the drive will be accessible.

“Each stage of the AI Data Cycle is unique with different infrastructure and compute requirements. By understanding the dynamic interplay between AI and data storage, Western Digital is delivering solutions that not only offer higher capacities but are also tailored to support the extreme performance and endurance of next-generation AI workloads,” said Soderbery. “With our growing portfolio, long-term roadmap and constant innovation, our goal is to help customers unlock the transformative capabilities of AI.”

Further Info About the AI Data Cycle and Western Digital’s AI Storage Portfolio: Data Storage for AI.

VOLT TEAM
VOLT TEAMhttps://thevoltpost.com/
The Volt Team is The Volt Post’s internal Editorial and Social Media Team. Primarily the team’s stint is to track the current development of the Tech B2B ecosystem. It is also responsible for checking the pulse of the emerging tech sectors and featuring real-time News, Views and Vantages.

Don't Miss

Webinar Registration Jan 2025

  • United States+1
  • United Kingdom+44
  • Afghanistan (‫افغانستان‬‎)+93
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Ascension Island+247
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Bangladesh (বাংলাদেশ)+880
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Eswatini+268
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Iran (‫ایران‬‎)+98
  • Iraq (‫العراق‬‎)+964
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Nepal (नेपाल)+977
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • North Korea (조선 민주주의 인민 공화국)+850
  • North Macedonia (Северна Македонија)+389
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Pakistan (‫پاکستان‬‎)+92
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358

This will close in 0 seconds