All You Need To Know About LiDAR in 2025!

Rapid laser pulses are emitted by LiDAR(Light...

Career Opportunities in IoT: A World of Innovation and Growth

The Internet of Things (IoT) is transforming...

Generative AI: Key Trends to Anticipate in 2025

Since its inception, Generative AI (Gen AI) has...

Trending

PowerMiser AI by SureCore Defining Versatile Memory in AI Workloads

Embedded memory at the core of AI workloads is critical to address the challenge, SureCore has revisited its PowerMiser IP and further optimised it to drive down dynamic power further as well as exploiting the power efficiencies of FinFET technology.PowerMiser AI by SureCore Defining Versatile Memory in AI Workloads the volt post

Delivering the inferencing power that users now expect requires massively parallel processing arrays which means not only increased power consumption but also ever-challenging thermal loads placing demands on packaging and cooling needs.

This has delivered a memory technology that minimises thermal impact whilst delivering the demanding performance profile needed by AI and has been called “PowerMiser AI”.

Paul Wells, sureCore’s CEO, explained, “Our typical customer has been using our ultra-low power SRAM IP in battery-powered applications to provide a longer operational life between recharges. The surge in AI augmentation means that whole new areas for our low-power memory solutions have appeared in new and exciting areas that are not constrained by battery life and can be mains powered or are even in the automotive space. Power consumption is still a critical factor for these applications but the constraining factor is starting to become heat dissipation and potential thermal damage. In order to keep product form factors under control and obviate the need for forced cooling so as to prevent overheating, new low power solutions are needed. Our recent announcements about working on ultra-low power memory IP for use in cryostats in the quantum computing arena, where heat generation by chips has to be minimised, has resulted in enquiries from companies who also need to keep AI chips operating within temperature boundaries albeit at the other end of the scale.

“Standard off-the-shelf SRAM IP has been optimised for area or speed, but not power.  Our technology is extremely power efficient and therefore generates less heat making it the ideal solution for the next generation of AI-enabled chips. This includes everything from Edge devices to in-car applications, and even to data centres all of which must minimise thermal overheads. This will become increasingly important as products increasingly rely on AI at the Edge and less on cloud-based solutions.”

Embedded SRAM can be a significant power drain when, for example, pattern matching. Thus, on a large AI-enabled chip, memory can account for as much as 50% of the power usage and is thus a major contributor to power consumption and thermal load. The company estimates that using PowerMiser AI would reduce dynamic power consumption by up to 50% delivering compelling cuts in thermal load meaning heat sinks or other cooling systems are either not required or are dramatically reduced thereby increasing overall system reliability.

AI workloads requires significant compute power which in turn requires considerable amounts of embedded memory integrated on chip as close to the compute units as possible to reduce latency.SureCore New SRAM IP named PowerMiser IP for AI Chips the volt post

sureCore Memory Range

sureCore, as part of its bespoke custom memory development service, sureFIT, delivers memory sub-system solutions optimised for the three-dimensional design space of Power, Performance and Area (PPA). Whilst a bespoke solution offers the opportunity to engineer the optimal solution for the target application, sureCore has a range of power-optimised, standard products that deliver market-leading power profiles so urgently needed by these applications. These include EveronPowerMiser, and MiniMiser. Further details can be found at on sureCore’s product page. Power savings can be realised both at nominal operating voltages and, increasingly importantly, at low to near threshold voltages allowing the application designers to tailor the power profile to the performance requirements. sureCore memories offer single rail, low voltage operation thereby allowing direct logic connection and significantly easing system-level design considerations.

sureCoreWhen low power is paramount

sureCore, the ultra-low power, embedded memory specialist, is the low-power innovator who empowers the IC design community to meet aggressive power budgets through a portfolio of ultra-low power memory design services and standard IP products. sureCore’s low-power engineering methodologies and design flows meet the most exacting memory requirements with a comprehensive product and design services portfolio that create clear market differentiation for customers. The company’s low-power product line encompasses a range of close to near-threshold, silicon proven, process-independent SRAM IP.

Don't Miss

Webinar Registration Jan 2025

This will close in 0 seconds